
FTPM Organization
Analysis for more modularity

Sat, Apr 14, 2001

The NServer routine in the FTPM local application initializes a non-server request for a Fast Time Plot 
protocol request. This routine requires 9 pages of source code in Pascal. It includes support for a 
number of types of digitizers. With such extensive examples, it should be possible to design an 
organization that could make adding yet another digitizer an easier job. The source code breaks out 
into separate code for each digitizer type, so one approach could divide these pieces of the code into 
separate modules called by NServer.

The separate portions of NServer break down into the several protocols whose support is covered by 
FTPM. These are called timing1, continuous6, and snapshot7. Timing1 supports the initial "what 
can you do for this device?" request. The continuous6 protocol supports collection of a continuous 
stream of "fast time plot" data, where contributions of the most recent measurements are returned to 
the requester at periods from 1–7 cycles at 15Hz. The snapshot7 protocol covers waveform captures 
from digitizer hardware. The latter logic further breaks down into support for a number of different 
digitizers.

The timing1 logic determines which class codes should be returned to implicitely describe the 
support available for a possible subsequent continuous6 request or a snapshot7 request. For the 
continuous6 case, there is always the default level of support of 15 Hz, since the entire data pool is 
updated at that rate. Assuming that the listype indicated in the SSDN is 0x00, meaning analog 
reading, FTDChan is invoked to determine whether up to 1KHz continuous data can be collected from 
the given channel. Those are the only choices for continuous plots. The snapshot case is a bit trickier. 
If a valid Swift/Quicker (IP board) CINFO table entry exists for the given channel, one of two snapshot 
class types is returned. If a valid Quick CINFO table entry exists, then return the code for the Quick 
(commercial VME board) digitizer. The last case is to check for a valid KHz (IRM 1 KHz) CINFO entry. 
If there is, such data can be captured into a snapshot buffer; otherwise, ordinary 15 Hz data pool 
access can be supported, even if it might take some time to accumulate a complete waveform at such a 
slow rate.

The continuous6 logic is short. It only prepares for the first-time reply to the continuous6 request, 
which means it does not include the data. For the case of sampling from the 1KHz circular buffer 
memory, the internalPtr array is set, preparing for the time when RFTData is called to collect the 
data.

The snapshot7 logic is not short. It includes most of the code in NServer. It sets the internalPtr 
array element to the appropriate waveform base address, depending on which fast digitizer type 
applies. Then special logic applies for each case. For the Swift case, there are two variations: auto-
triggered and not. In each variation, the fields of the periodic status reply message are determined. If 
the hardware is auto-triggered, the registers are read to set the reply fields; otherwise, the request 
fields are interpreted to match up with the ability of the digitizer. For the Quick case, the registers 
determine the reply fields. For the kHz case, there are again two variations: the 15Hz cycle case and 
the general case of any rate up to 1000 Hz.


